
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids

pmid: 28369331
The potential for modern coalfield methanogenesis was assessed using formation water from the Illinois Basin, Powder River Basin and Cook Inlet gas field as inocula for nutrient-replete incubations amended with C1-C5 fatty acids as presumed intermediates formed during anaerobic coal biodegradation. Instead of the expected rapid mineralization of these substrates, methanogenesis was inordinately slow (∼1 μmol day-1), following long lag periods (>100 days), and methane yields typically did not reach stoichiometrically expected levels. However, a gene microarray confirmed the potential for a wide variety of microbiological functions, including methanogenesis, at all sites. The Cook Inlet incubations produced methane at a relatively rapid rate when amended with butyrate (r = 0.98; p = 0.001) or valerate (r = 0.84; p = 0.04), a result that significantly correlated with the number of positive mcr gene sequence probes from the functional gene microarray and was consistent with the in situ detection of C4-C5 alkanoic acids. This finding highlighted the role of syntrophy for the biodegradation of the softer lignite and subbituminous coal in this formation, but methanogenesis from the harder subbituminous and bituminous coals in the other fields was less apparent. We conclude that coal methanogenesis is probably not limited by the inherent lack of metabolic potential, the presence of alternate electron acceptors or the lack of available nutrients, but more likely restricted by the inherent recalcitrance of the coal itself.
- University of California System United States
- Oklahoma City University United States
- Oklahoma City University United States
570, functional gene array, Volatile, microbial communities, Euryarchaeota, Microbiology, Medical and Health Sciences, Environmental, metabolite analysis, alkanoic acids, coal basin, Oil and Gas Fields, Microbiota, Fatty Acids, 500, coalbed methane, Biological Sciences, Fatty Acids, Volatile, Biodegradation, Environmental, Coal, Biodegradation, Methane, Environmental Sciences
570, functional gene array, Volatile, microbial communities, Euryarchaeota, Microbiology, Medical and Health Sciences, Environmental, metabolite analysis, alkanoic acids, coal basin, Oil and Gas Fields, Microbiota, Fatty Acids, 500, coalbed methane, Biological Sciences, Fatty Acids, Volatile, Biodegradation, Environmental, Coal, Biodegradation, Methane, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
