Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Le...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Letters
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Untargeted metabolic profiling of Vitis vinifera during fungal degradation

Authors: Karpe, Avinash V.; Beale, David J.; Morrison, Paul D.; Harding, Ian H.; Palombo, Enzo A.;

Untargeted metabolic profiling of Vitis vinifera during fungal degradation

Abstract

This paper illustrates the application of an untargeted metabolic profiling analysis of winery-derived biomass degraded using four filamentous fungi (Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and P. citrinum) and a yeast (Saccharomyces cerevisiae). Analysis of the metabolome resulted in the identification of 233 significant peak features [P 2 and signal-to-noise ratio >50] using gas chromatography-mass spectrometry followed by statistical chemometric analysis. Furthermore, A. niger and P. chrysogenum produced higher biomass degradation due to considerable β-glucosidase and xylanase activities. The major metabolites generated during fungal degradation which differentiated the metabolic profiles of fungi included sugars, sugar acids, organic acids and fatty acids. Although, P. chrysogenum could degrade hemicelluloses due to its high β-glucosidase and xylanase activities, it could not utilize the resultant pentoses, which A. niger and P. citrinum could do efficiently, thus indicating a need of mixed fungal culture to improve the biomass degradation. Saccharomyces cerevisiae, a non-cellulose degrader, exhibited sugar accumulation during the fermentation. Penicillium chrysogenum was observed to degrade about 2% lignin, a property not observed in other fungi. This study emphasized the differential fungal metabolic behavior and demonstrated the potential of metabolomics in optimizing degradation or manipulating pathways to increase yields of products of interest.

Country
Australia
Keywords

Trichoderma, Endo-1,4-beta Xylanases, beta-Glucosidase, Pentoses, Australia, Penicillium, Saccharomyces cerevisiae, Penicillium chrysogenum, Lignin, Gas Chromatography-Mass Spectrometry, Polysaccharides, Metabolome, Vitis, Aspergillus niger, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research