Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Integrative and Comparative Biology
Article . 2024 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone

Authors: Maya S, deVries; Nhi, Ly; Chase, Ebner; Ryan, Hallisey;

From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone

Abstract

Synopsis A central question in ecology is to what extent do trophic interactions govern the structure and function of communities? This question is becoming more pressing as trophic interactions shift with rapid climate change. Sea urchins and abalone are key invertebrates in the habitats where they reside. Sea urchins are critical members of exemplar trophic cascades in kelp forests due to their impact on kelp establishment and maintenance; yet their populations are controlled by predators, such as sea otters and sunflower sea stars. Abalone compete with urchins for macroalgal food resources and therefore can help regulate urchin populations in kelp forests. Given that both urchin tests and abalone shells used for predator defense are comprised of calcium carbonate, much research has been conducted on the impacts of ocean acidification (OA) on these calcified structures. A growing body of literature has shown that urchin tests are less calcified and break with less force under OA conditions. Less is known about abalone, but their shells also appear to respond negatively to OA. Using kelp forest communities as exemplar ecosystems, we discuss the morphological, biomechanical, and physiological responses to OA in urchins and abalone and consider how these individual level responses scale to trophic interactions and ultimately whole ecosystem processes. Although the impacts of OA on the calcified structures used for defense have been well studied, calcified mechanisms for food consumption, such as the Aristotle's lantern of urchins, are much less understood. Thus, examining both the feeding and defense sides of trophic interactions would greatly improve our understanding of OA responses across individual to ecosystem scales. More generally, measurements of morphological, biomechanical, and physiological responses to OA can be made in individuals to help predict higher level ecological responses, which would greatly contribute to broader predictions of whole ecosystem responses to OA.

Related Organizations
Keywords

Food Chain, Ocean Acidification, Oceans and Seas, Climate Change, Gastropoda, Hydrogen-Ion Concentration, Kelp, Sea Urchins, Animals, Seawater, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average