Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tree Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tree Physiology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2005
Data sources: HAL INRAE
Tree Physiology
Article . 2005 . Peer-reviewed
Data sources: Crossref
Tree Physiology
Article . 2007
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diversity of leaf traits related to productivity in 31 Populus deltoides x Populus nigra clones

Authors: Francis M. Delmotte; Didier Delay; Eric Boudouresque; Marc Villar; Jean-Michel Petit; Erwin Dreyer; Nicolas Marron; +2 Authors

Diversity of leaf traits related to productivity in 31 Populus deltoides x Populus nigra clones

Abstract

To test if some leaf parameters are predictors of productivity in a range of Populus deltoides (Bartr.) Marsh. x P. nigra L. clones, we assessed leaf traits and productivity in 2-month-old rooted cuttings from 31 clones growing in 4-l pots in a greenhouse, under conditions of controlled temperature and optimal irrigation. We evaluated four groups of variables describing (1) productivity (total biomass), (2) leaf growth (total leaf number increment and total leaf area increment rate), (3) leaf structure (specific leaf area and nitrogen and carbon contents) and (4) carbon isotope discrimination (delta), which is negatively correlated with time-integrated water-use efficiency. High-yielding clones did not necessarily display high leaf growth rates, but they displayed a larger total leaf area, lower specific leaf area and lower leaf nitrogen concentration than clones with low productivity. Total leaf area was mainly controlled by maximal individual leaf area and total leaf area increment rate (r = 0.51 and 0.56, respectively). Carbon isotope discrimination did not correlate with total biomass, but it was associated with total number of leaves and total leaf area increment rate (r = 0.39 and 0.45, respectively). Therefore, leaf area and specific leaf area were better indicators of productivity than leaf growth traits. The observed independence of delta from biomass production provides opportunities for selecting poplar clones combining high productivity and high water-use efficiency.

Country
France
Keywords

[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, Biometry, Nitrogen, Plant Roots, [SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry, Biomass, 580, Carbon Isotopes, Plant Stems, forestry, Genetic Variation, Water, POPULUS DELTOIDE, CARACTERISTIQUE DE LA FEUILLE, WATER USE EFFICIENCY, Carbon, Plant Leaves, Populus, INDEX DE PLASTOCHRON, PEUPLIER, PEUPLIER NOIR, [SDV.SA.SF] Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
bronze