Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tree Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tree Physiology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2010
Data sources: HAL INRAE
Tree Physiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
Tree Physiology
Article . 2010
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion

Authors: Limousin, Jean-Marc; Longepierre, Damien; Huc, Roland; Rambal, Serge;

Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion

Abstract

Mediterranean tree species experience unpredictable climate environments and severe summer droughts and they may be impaired by the trend of decline in precipitation projected as a consequence of global climate change. The response of Quercus ilex to drought was studied by measuring hydraulic traits of trees growing in a mature forest subjected to partial throughfall exclusion for 6 years. We measured hydraulic conductivity, xylem vulnerability to embolism, and anatomical features in branches and roots. Xylem vulnerability to embolism was higher in the dry treatment than in the control treatment, P₅₀ of branches was on average -3.88 +/- 0.80 MPa for the control treatment compared with -3.41 +/- 0.80 MPa for the dry treatment, but the difference was not statistically significant. A similar difference between treatments was observed for roots, which exhibited lower P₅₀ values. This change of xylem vulnerability to embolism was not linked to modification of the hydraulic conductivity or vessel anatomy, which remained unaffected by the throughfall exclusion treatment. The xylem density of branches was lower in the dry treatment. The hydraulic conductivity was correlated with the mean vessel diameter of xylem, but the P₅₀ was not. The main response of trees from the dry treatment to reduced water availability appeared to be a reduction in the transpiring leaf area, which resulted in significantly increased leaf-specific conductivity.

Country
France
Keywords

[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, 550, Climate, CLIMATE CHANGE, Quercus, [SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry, THROUGHFALL EXCLUSION, DROUGHT, Ecosystem, 580, VULNERABILITY, XYLEM ANATOMY, Mediterranean Region, HYDRAULIC CONDUCTIVITY, forestry, Water, EMBOLISM, Wood, Droughts, Plant Leaves, CHENE VERT, [SDV.SA.SF] Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
bronze