
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings

pmid: 29648619
The changing climate will expose boreal forests to rising temperatures, increasing soil nitrogen (N) levels and an increasing risk of herbivory. The single and interaction effects of warming (+2 °C increase), moderate N addition (30 kg ha-1 year-1) and bark herbivory by large pine weevil (Hylobius abietis L.) on growth and emissions of biogenic volatile organic compounds (BVOCs) from shoots of Scots pine (Pinus sylvestris L.) seedlings were studied in growth chambers over 175 days. In addition, warming and N addition effects on shoot net photosynthesis (Pn) were measured. Nitrogen addition increased both shoot and root dry weights, whereas warming, in combination with herbivory, reduced stem height growth. Warming together with N addition increased current-year shoot Pn, whereas N effects on previous-year shoot Pn were variable over time. Warming decreased non-oxygenated monoterpene (MT) emissions in June and increased them in July. Of individual MT compounds, α-pinene, δ-3-carene, γ-terpinene and terpinolene were among the most frequently responsive compounds in warming treatments in the May-July period. Sesquiterpene emissions were observed only from warming treatments in July. Moderate N addition increased oxygenated monoterpenes in May, and MTs in June and September. However, N addition effect on MTs in June was clearer without warming than with warming. Bark herbivory tended to increase MT emissions in combination with warming and N addition 3 weeks after the damage caused by weevils. Of individual compounds in other BVOC blends, herbivory increased the emissions of methyl-benzene, benzene and hexanal in July. Hence, though both warming and N addition have a potential to change BVOC emissions from Scots pines, the N effect may also be partly cancelled by warming. Furthermore, herbivory pressure in combination with climate warming and N addition may, at least periodically, increase BVOC release to the atmosphere from young Scots pine seedlings.
- University of Eastern Finland Finland
Volatile Organic Compounds, Food Chain, Hot Temperature, Nitrogen, Climate Change, Pinus sylvestris, Global Warming, Soil, Seedlings, Plant Bark, Animals, Weevils, Herbivory, Finland, Plant Shoots
Volatile Organic Compounds, Food Chain, Hot Temperature, Nitrogen, Climate Change, Pinus sylvestris, Global Warming, Soil, Seedlings, Plant Bark, Animals, Weevils, Herbivory, Finland, Plant Shoots
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
