
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading

Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy.
- University of London United Kingdom
- University of Liverpool United Kingdom
- Middlesex University United Kingdom
- University of East Anglia United Kingdom
- Queen Mary University of London United Kingdom
Analysis of Variance, Microscopy, Confocal, Age Factors, 621, Biomechanical Phenomena, Tendons, Energy Transfer, Elastic Modulus, Materials Testing, Muscle Fatigue, Tendinopathy, Image Processing, Computer-Assisted, Animals, Horse Diseases, Horses
Analysis of Variance, Microscopy, Confocal, Age Factors, 621, Biomechanical Phenomena, Tendons, Energy Transfer, Elastic Modulus, Materials Testing, Muscle Fatigue, Tendinopathy, Image Processing, Computer-Assisted, Animals, Horse Diseases, Horses
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
