
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Partitioning prediction uncertainty in climate-dependent population models

The science of complex systems is increasingly asked to forecast the consequences of climate change. As a result, scientists are now engaged in making predictions about an uncertain future, which entails the efficient communication of this uncertainty. Here we show the benefits of hierarchically decomposing the uncertainty in predicted changes in animal population size into its components due to structural uncertainty in climate scenarios (greenhouse gas emissions and global circulation models), structural uncertainty in the demographic model, climatic stochasticity, environmental stochasticity unexplained by climate–demographic trait relationships, and sampling variance in demographic parameter estimates. We quantify components of uncertainty surrounding the future abundance of a migratory bird, the greater snow goose ( Chen caeruslescens atlantica ), using a process-based demographic model covering their full annual cycle. Our model predicts a slow population increase but with a large prediction uncertainty. As expected from theoretical variance decomposition rules, the contribution of sampling variance to prediction uncertainty rapidly overcomes that of process variance and dominates. Among the sources of process variance, uncertainty in the climate scenarios contributed less than 3% of the total prediction variance over a 40-year period, much less than environmental stochasticity. Our study exemplifies opportunities to improve the forecasting of complex systems using long-term studies and the challenges inherent to predicting the future of stochastic systems.
modèle de prédiction, 550, 330, [SDV]Life Sciences [q-bio], Climate Change, Population Dynamics, model prediction error, stochastic system, greater snow geese, animal population growth, Anseriformes, Animals, Population Density, Uncertainty, système stochastique, Models, Theoretical, modèle de population, [SDV] Life Sciences [q-bio], climate change, adaptation au changement climatique, population animale, animal population
modèle de prédiction, 550, 330, [SDV]Life Sciences [q-bio], Climate Change, Population Dynamics, model prediction error, stochastic system, greater snow geese, animal population growth, Anseriformes, Animals, Population Density, Uncertainty, système stochastique, Models, Theoretical, modèle de population, [SDV] Life Sciences [q-bio], climate change, adaptation au changement climatique, population animale, animal population
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
