
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index () which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of () relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA.
- Institute for Soil Science and Agricultural Chemistry Hungary
- MTA Centre for Agricultural Research Hungary
- Hungarian Academy of Sciences Hungary
- Hungarian Academy of Science Hungary
- Hungarian Academy of Science Hungary
Technology, Science, Climate, Solar Energy, Computer Simulation, Biomass, Models, Statistical, Fourier Analysis, T, Q, R, Temperature, Reproducibility of Results, Agriculture, Models, Theoretical, United States, Calibration, Medicine, Algorithms, Research Article
Technology, Science, Climate, Solar Energy, Computer Simulation, Biomass, Models, Statistical, Fourier Analysis, T, Q, R, Temperature, Reproducibility of Results, Agriculture, Models, Theoretical, United States, Calibration, Medicine, Algorithms, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
