Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropharmacology
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of combined exposure to ethanol and delta-9-tetrahydrocannabinol during adolescence on synaptic plasticity in the prefrontal cortex of Long Evans rats

Authors: Linyuan Shi; Shuo Kang; Chan Young Choi; Brynn L. Noonan; Lauren K. Carrica; Nu-Chu Liang; Joshua M. Gulley;

Effects of combined exposure to ethanol and delta-9-tetrahydrocannabinol during adolescence on synaptic plasticity in the prefrontal cortex of Long Evans rats

Abstract

ABSTRACTSignificant exposure to alcohol or cannabis during adolescence can induce lasting disruptions of neuronal signaling in brain regions that are later to mature, such as the medial prefrontal cortex (mPFC). Considerably less is known about the effects of alcohol and cannabis co-use, despite its common occurrence. Here, we used male and female Long-Evans rats to investigate the effects of early-life exposure to ethanol, delta-9-tetrahydrocannabinol (THC), or their combination on high frequency stimulation (HFS)-induced plasticity in the prelimbic region of the mPFC. Animals were injected daily from postnatal days 30 to 45 with vehicle or THC (escalating doses, 3-20 mg/kg) and allowed to drink vehicle (0.1% saccharin) or 10% ethanol immediately after each injection.In vitrobrain slice electrophysiology was then used to record population responses of layer V neurons following HFS in layer II/III after 3-4 weeks of abstinence. We found that THC exposure reduced body weight gains observed inad libitumfed rats, and reduced intake of saccharin and ethanol. Compared to controls, there was a significant reduction in HFS-induced long-term depression (LTD) in rats exposed to either drug alone, and an absence of LTD in rats exposed to the drug combination. Bath application of indiplon or AR-A014418, which enhance GABAAreceptor function or inhibit glycogen synthase kinase 3β (GSK3β), respectively, suggested the effects of ethanol, THC or their combination were due in part to lasting adaptations in GABA and GSK3β signaling. These results suggest the potential for long-lasting adaptations in mPFC output following co-exposure to alcohol and THC.

Keywords

Male, Cannabinoid Receptor Agonists, Glycogen Synthase Kinase 3 beta, Neuronal Plasticity, Ethanol, Prefrontal Cortex, Receptors, GABA-A, Article, Rats, Saccharin, Hallucinogens, Animals, Female, Rats, Long-Evans, Dronabinol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green