Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research at Derby (U...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Peer Community Journal
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Peer Community Journal
Article . 2024
Data sources: DOAJ
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The bacterial microbiome of symbiotic and menthol-bleached polyps of long-term aquarium-rearedGalaxea fascicularis

Authors: Giulia Puntin; Jane C. Y. Wong; Till Röthig; David M. Baker; Michael Sweet; Maren Ziegler;

The bacterial microbiome of symbiotic and menthol-bleached polyps of long-term aquarium-rearedGalaxea fascicularis

Abstract

AbstractCoral reefs support the livelihood of half a billion people but are at high risk of collapse due to the vulnerability of corals to climate change and local anthropogenic stressors. While understanding coral functioning is essential to guide conservation efforts, research is challenged by the complex nature of corals. They exist as metaorganisms (holobionts), constituted by the association between the (coral) animal host, its obligate endosymbiotic algae (Symbiodiniaceae), and other microorganisms comprising bacteria, viruses, archaea, fungi and other protists. Researchers therefore increasingly turn to model organisms to unravel holobiont complexity, dynamics, and how these determine the health and fitness of corals. The coral Galaxea fascicularis is an emerging model organism for coral symbiosis research with demonstrated suitability to aquarium rearing and reproduction, and to manipulation of the host-Symbiodiniaceae symbiosis. However, little is known about the response of theG. fascicularismicrobiome to menthol bleaching—the experimental removal of the Symbiodiniaceae which represents the first step in coral-algal symbiosis manipulation. For this, we characterized the bacterial microbiome of symbiotic and menthol-bleachedG. fascicularisoriginating from the Red Sea and South China Sea (Hong Kong) that were long-term aquarium-reared in separate facilities. We found that the coral-associated microbiomes were composed of relatively few bacterial taxa (10-78 ASVs). Symbiotic polyps (clonal replicates) from the same colony had similar microbiomes, which were distinct from those of other colonies despite co-culturing in shared aquaria. A pattern of seemingly differential response of the bacterial microbiome to menthol bleaching between the two facilities emerged, warranting further investigation into the role of rearing conditions. Nevertheless, the changes in community composition overall appeared to be stochastic suggesting a dysbiotic state. Considering the importance of bleaching treatment of captive corals for symbiosis research, our results—although preliminary—contribute fundamental knowledge for the development of the Galaxea model for coral symbiosis research.

Country
United Kingdom
Keywords

climate change, Archaeology, coral symbiosisb, Science, Q, coral reefs, CC1-960, Galaxea model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Top 10%
Average
Green
gold