
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Flexible ITO-Free Roll-Processed Large-Area Nonfullerene Organic Solar Cells Based on P3HT:O-IDTBR

The mark of 18% power conversion efficiency (PCE) was recently overcome by laboratory-scale organic solar cells (OSCs) thanks to the development of nonfullerene acceptors (NFAs). NFA-based solar cells show improved performance and stability compared with those of their fullerene-acceptor-based counterparts. However, only a few studies focus on scalable deposition techniques or roll-to-roll compatible processing, which is of paramount importance for the commercialization of the technology. Here, we report a simple and fast fabrication of slot-die-coated poly(3-hexylthiophene-2,5-diyl):(5Z,5'Z)-5,5'-{7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl)]bis(methanylylidene)}bis(3-ethyl-2-thioxothiazolidin-4-one) (P3HT:O-IDTBR) OSCs using a roll platform on flexible ITO-free substrates under ambient conditions. We show that the optical band gap of the active layer increases when an isopropanol-diluted poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) hole-transport layer is coated on top of it, changing the device properties. Optimization of the coating conditions leads to the achievement of up to 3.6% PCE for single cells of $1\phantom{\rule{0.1em}{0ex}}{\mathrm{cm}}^{2}$ fabricated under ambient conditions with flexographic printed $\mathrm{Ag}$ back electrodes, compared with solar cells with evaporated Ag (3.8% PCE), $\mathrm{Au}$ (2.1% PCE), or $\mathrm{Cu}$ (3.0% PCE) back contacts. OSCs with larger areas of $4\phantom{\rule{0.1em}{0ex}}{\mathrm{cm}}^{2}$ with 2.3% PCE are also fabricated, where the fast increase of the series resistance with the area is the main PCE-limiting factor. The efficiencies herein reported for NFAs obtained by roll processing show the excellent potential of the P3HT:O-IDTBR blend for large-scale fabrication.
- Technical University of Denmark Denmark
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
