Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Sector Management
Article . 2020 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A statistical approach to identify asynchronous extreme events for multi-regional energy system models

Authors: Khuong, Phuong Minh; Yilmaz, Hasan Ü.; McKenna, Russell; Keles, Dogan;

A statistical approach to identify asynchronous extreme events for multi-regional energy system models

Abstract

Purpose With the growing deployment of variable renewable energy sources, such as wind and PV and the increasing interconnection of the power grid, multi-regional energy system models (ESMs) are increasingly challenged by the growth of model complexity. Therefore, the need for developing ESMs, which are realistic but also solvable with acceptable computational resources without losing output accuracy, arises. The purpose of this study is to propose a statistical approach to investigate asynchronous extreme events for different regions and then assess their ability to keep the output accuracy at the level of the full-resolution case. Design/methodology/approach To extract the extreme events from the residual demands, the paper focuses on analyzing the tail of the residual demand distributions by using statistical approaches. The extreme events then are implemented in an ESM to assess the effect of them in protecting the accuracy of the output compared with the full-resolution output. Findings The results show that extreme-high and fluctuation events are the most important events to be included in data input to maintain the flexibility output of the model when reducing the resolution. By including these events into the reduced data input, the output's accuracy reaches the level of 99.1% compared to full resolution case, while reducing the execution time by 20 times. Originality/value Moreover, including extreme-fluctuation along with extreme-high in the reduced data input helps the ESM to avoid misleading investment in conventional and low-efficient generators.

Country
Germany
Keywords

info:eu-repo/classification/ddc/330, 330, ddc:330, Economics, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average