
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Energy Management of UAV-Based Cellular Networks Powered by Solar Panels and Batteries: Formulation and Solutions

handle: 10662/20099 , 2108/242310 , 11573/1280791
Nos centramos en el problema de la gestión del consumo energético de una red celular adaptada para cubrir zonas rurales y de bajos ingresos. La arquitectura considerada explota vehículos aéreos no tripulados (UAV) para garantizar la cobertura inalámbrica, así como paneles solares (SP) y baterías instaladas en un conjunto de emplazamientos en tierra, que proporcionan la energía necesaria para recargar los UAV. El objetivo es maximizar la energía almacenada en los UAV y en los emplazamientos terrestres, garantizando la cobertura del territorio mediante la programación de las misiones de los UAV en el espacio y en el tiempo. Tras proporcionar la formulación del problema, nos enfrentamos a su complejidad proponiendo un enfoque basado en la descomposición y diseñando un algoritmo genético completamente nuevo. Los resultados, obtenidos a partir de un conjunto de casos representativos, revelan que existe un equilibrio entre el nivel de batería de los UAV, el nivel de batería de los emplazamientos en tierra y el nivel de cobertura. Además, tanto la versión descompuesta como el algoritmo genético se aproximan lo suficiente al modelo integrado, con una fuerte mejora en los tiempos de cálculo.
We focus on the problem of managing the energy consumption of a cellular network tailored to cover rural and low-income areas. The considered architecture exploits Unmanned Aerial Vehicles (UAVs) to ensure wireless coverage, as well as Solar Panels (SPs) and batteries installed in a set of ground sites, which provides the energy required to recharge the UAVs. We then target the maximization of the energy stored in the UAVs and in the ground sites, by ensuring the coverage of the territory through the scheduling of the UAV missions over space and time. After providing the problem formulation, we face its complexity by proposing a decomposition-based approach and by designing a brand-new genetic algorithm. The results, obtained over a set of representative case studies, reveal that there exists a trade-off between the UAVs battery level, the ground sites battery level, and the level of coverage. In addition, both the decomposed version and the genetic algorithm perform sufficiently close to the integrated model, with a strong improvement in the computation times.
This work was supported in part by the University of Rome Tor Vergata BRIGHT project (Mission Sustainability Call), in part by the Interreg V-A España-Portugal (POCTEP) 2014-2020 Program (4IE Project (0045-4IE-4P)), in part by the Department of Economy and Infrastructure of the Government of Extremadura under Grant IB16055, Grant IB18030, Grant GR18112, and Grant 2018 Mobility Grants, and in part by the MIUR Project PRIN 2015JJLC3E-PE1
peerReviewed
690, Programación lineal entera mixta, General Computer Science, cellular networks, Gestión de energía, Renewable energy source, energy management; mixed integer linear programming; renewable energy sources; Unmanned Aerial Vehicles; UAV mission scheduling; cellular networks, Vehículos aéreos no tripulados, Redes celulares, mixed integer linear programming, Cellular network, Unmanned aerial vehicles, Renewable energy sources, Mixed integer linear programming, Cellular networks; Energy management; Mixed integer linear programming; Renewable energy sources; Uav mission scheduling; Unmanned aerial vehicles, General Materials Science, UAV mission scheduling, renewable energy sources, Fuentes de energía renovables, Unmanned Aerial Vehicles, General Engineering, Energy management, Cellular networks, Energy Research, 3307 Tecnología Electrónica, TK1-9971, Uav mission scheduling, Settore ING-INF/03 - TELECOMUNICAZIONI, 3325 Tecnología de las Telecomunicaciones, Electrical engineering. Electronics. Nuclear engineering, 3306 Ingeniería y Tecnología Eléctricas, Planificación de misiones de drones
690, Programación lineal entera mixta, General Computer Science, cellular networks, Gestión de energía, Renewable energy source, energy management; mixed integer linear programming; renewable energy sources; Unmanned Aerial Vehicles; UAV mission scheduling; cellular networks, Vehículos aéreos no tripulados, Redes celulares, mixed integer linear programming, Cellular network, Unmanned aerial vehicles, Renewable energy sources, Mixed integer linear programming, Cellular networks; Energy management; Mixed integer linear programming; Renewable energy sources; Uav mission scheduling; Unmanned aerial vehicles, General Materials Science, UAV mission scheduling, renewable energy sources, Fuentes de energía renovables, Unmanned Aerial Vehicles, General Engineering, Energy management, Cellular networks, Energy Research, 3307 Tecnología Electrónica, TK1-9971, Uav mission scheduling, Settore ING-INF/03 - TELECOMUNICAZIONI, 3325 Tecnología de las Telecomunicaciones, Electrical engineering. Electronics. Nuclear engineering, 3306 Ingeniería y Tecnología Eléctricas, Planificación de misiones de drones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
