Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fitness for Service and Reliability of Materials for Manufacturing Components Intended for Demanding Service Conditions in the Petrochemical Industry

Authors: Alvaro Rodriguez-Prieto; Ana Maria Camacho; Manuel Callejas; Miguel A. Sebastian;

Fitness for Service and Reliability of Materials for Manufacturing Components Intended for Demanding Service Conditions in the Petrochemical Industry

Abstract

A methodology has been developed to quantitatively assess the suitability of use and fitness for service of candidate materials using a novel approach that includes multiple perspectives. As a case study, a carbon steel pipe has been selected for operation in the petrochemical sector. The materials studied were the following: American Petroleum Institute (API) A25, A, B, X42, X46, X52, X56, X60, X65 and X70, as well as American Society for Testing and Materials (ASTM) A-106 Gr. A, B and C. The developed model combines an analytical multiperspective approach with calculation methods based on recognized prestige standards. In the present study, the following material degradation mechanisms have been considered: generalized corrosion, fracture due to mechanical overload and high-temperature degradation. Several novel analysis elements have been incorporated into this new methodology, such as the concept of a suitability matrix and a fitness for service index. The approach allows construction of a decision diagram, and the best alternatives ordered according to the criteria and restrictions that have arisen from the analysis are obtained. Additionally, from the analysis, a series of service limitations are proposed based on the maximum hours of operation of a component. The materials ASTM A-106 Gr. A, API-A, ASTM A-106 Gr. B and API-B maintain the best balance between properties and show greater reliability versus the probability of failure due to the degradation mechanisms considered in this study. In addition, some use limitations such as critical exposure temperature have been determined for these materials (450 °C for ASTM A-106 Gr. A designation and 440 °C for API-B and ASTM A-106 Gr. B designations) to avoid the harmful effects of high-temperature operation on the material mechanical properties.

Keywords

reliability, high-temperature, TK1-9971, use limitations, Fitness for service, Electrical engineering. Electronics. Nuclear engineering, performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold