Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/4j...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/f9...
Other literature type . 2020
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Void Hole Alleviation: Enhanced GEographic and Opportunistic Routing Protocols in Harsh Underwater WSNs

نحو التخفيف من فجوة الفراغ: بروتوكولات التوجيه الجغرافية والفرصية المعززة في شبكات الأمان العالمية القاسية تحت الماء
Authors: Muhammad Awais; Ishtiaq Ali; Turki Ali Alghamdi; Muhammad Ramzan; Muhammad Tahir; Mariam Akbar; Nadeem Javaid;

Towards Void Hole Alleviation: Enhanced GEographic and Opportunistic Routing Protocols in Harsh Underwater WSNs

Abstract

Las redes de sensores inalámbricos subacuáticos habilitadas para Internet de las cosas (IoT-UWSN) son bastante útiles para monitorear diferentes tareas, que incluyen: desde el monitoreo de instrumentos hasta el registro del clima y desde el control de la contaminación hasta la predicción de desastres naturales. Sin embargo, hay algunos desafíos que afectan el rendimiento de una red, es decir, la aparición de huecos, el alto consumo de energía (EC) y la baja relación de entrega de paquetes (PDR). Por lo tanto, en este trabajo, se proponen dos protocolos de enrutamiento de eficiencia energética para maximizar el PDR al minimizar la relación de ocurrencia de huecos. También se realiza un análisis de escalabilidad de los protocolos de enrutamiento propuestos. Además, se calculan las regiones factibles para comprobar la optimalidad del protocolo propuesto en términos de CE. Además, los protocolos propuestos se comparan con los protocolos de enrutamiento de referencia en contrapartes. Los resultados de la simulación muestran claramente que los protocolos de enrutamiento propuestos lograron una PDR un 80-81% más alta que el enrutamiento geográfico y oportunista con el control de topología basado en el ajuste de profundidad para la recuperación de la comunicación (GEDAR) y el nodo vecino de ajuste de transmisión que se aproxima a compañeros distintos de eficiencia energética (TA-NADEEM). Además, la relación de ocurrencia de huecos se minimiza hasta un 30% aproximadamente.

Les réseaux de capteurs sans fil sous-marins activés par l'Internet des objets (IoT-UWSN) sont très utiles pour surveiller différentes tâches, notamment : de la surveillance des instruments à l'enregistrement du climat et du contrôle de la pollution à la prédiction des catastrophes naturelles. Cependant, il existe certains défis qui affectent les performances d'un réseau, à savoir l'apparition de trous vides, une consommation d'énergie élevée (EC) et un faible taux de livraison de paquets (PDR). Par conséquent, dans ce travail, deux protocoles de routage écoénergétiques sont proposés pour maximiser le PDR en minimisant le rapport d'occurrence des trous vides. Une analyse d'évolutivité des protocoles de routage proposés est également effectuée. En outre, des régions réalisables sont calculées pour vérifier l'optimalité du protocole proposé en termes de CE. En outre, les protocoles proposés sont comparés aux protocoles de routage de référence dans leurs homologues. Les résultats de la simulation montrent clairement que les protocoles de routage proposés ont atteint un PDR supérieur de 80 à 81 % à celui du routage géographique et opportuniste avec un contrôle de topologie basé sur l'ajustement de la profondeur pour la récupération des communications (GEDAR) et l'ajustement de la transmission en approchant des nœuds voisins distincts (TA-NADEEM). De plus, le rapport d'occurrence des trous vides est minimisé jusqu'à 30% environ.

Internet of Things enabled Underwater Wireless Sensor Networks (IoT-UWSNs) are quite useful in monitoring different tasks including: from instrument monitoring to the climate recording and from pollution control to the prediction of natural disasters. However, there are some challenges, which affect the performance of a network, i.e., void hole occurrence, high Energy Consumption (EC) and low Packet Delivery Ratio (PDR). Therefore, in this work, two energy efficient routing protocols are proposed to maximize the PDR by minimizing the ratio of void hole occurrence. Scalability analysis of the proposed routing protocols is also performed. Additionally, feasible regions are computed to check the optimality of the proposed protocol in terms of EC. Furthermore, proposed protocols are compared with benchmark routing protocols in counterparts. Simulation results clearly show that proposed routing protocols achieved 80-81% higher PDR than GEographic and opportunistic routing with Depth Adjustment based topology control for communication Recovery (GEDAR) and Transmission Adjustment Neighbor-node Approaching Distinct Energy Efficient Mates (TA-NADEEM). Moreover, the ratio of void hole occurrence is minimized upto 30% approximately.

تمكّن إنترنت الأشياء شبكات الاستشعار اللاسلكية تحت الماء (IoT - UWSNs) مفيدة للغاية في مراقبة المهام المختلفة بما في ذلك: من مراقبة الأجهزة إلى تسجيل المناخ ومن التحكم في التلوث إلى التنبؤ بالكوارث الطبيعية. ومع ذلك، هناك بعض التحديات، التي تؤثر على أداء الشبكة، أي حدوث ثقب الفراغ، وارتفاع استهلاك الطاقة (EC) وانخفاض نسبة تسليم الحزمة (PDR). لذلك، في هذا العمل، يُقترح بروتوكولان للتوجيه موفران للطاقة لتعظيم PDR عن طريق تقليل نسبة حدوث ثقب الفراغ. كما يتم إجراء تحليل قابلية التوسع لبروتوكولات التوجيه المقترحة. بالإضافة إلى ذلك، يتم حساب المناطق الممكنة للتحقق من أمثلية البروتوكول المقترح من حيث المفوضية الأوروبية. علاوة على ذلك، تتم مقارنة البروتوكولات المقترحة مع بروتوكولات التوجيه المعيارية في النظراء. تُظهر نتائج المحاكاة بوضوح أن بروتوكولات التوجيه المقترحة حققت PDR أعلى بنسبة 80-81 ٪ من التوجيه الجغرافي والانتهازي مع التحكم الطوبولوجي القائم على ضبط العمق لاسترداد الاتصالات (GEDAR) وتعديل الإرسال للعقدة المجاورة التي تقترب من أصحاب كفاءة الطاقة المتميزين (TA - NADEEM). علاوة على ذلك، يتم تقليل نسبة حدوث ثقب الفراغ إلى 30 ٪ تقريبًا.

Country
United Kingdom
Keywords

Computer Networks and Communications, Wireless Energy Harvesting, Wireless Energy Harvesting and Information Transfer, Energy-Efficient Protocols, Ocean Engineering, Link-state routing protocol, Database, Engineering, Interior gateway protocol, Energy-Efficient Routing, FOS: Electrical engineering, electronic engineering, information engineering, Dynamic Source Routing, Internet of Things enabled harsh underwater WSNs, Electrical and Electronic Engineering, enhanced geographic and opportunistic routing, Computer network, Wireless Sensor Networks: Survey and Applications, Network packet, Underwater wireless sensor networks, Scalability, 621, Underwater Acoustic Sensor Networks and Communication, Underwater Acoustic Sensor Networks, Computer science, energy hole alleviation, Distributed computing, 004, 620, TK1-9971, Routing protocol, Physical Sciences, Computer Science, Electrical engineering. Electronics. Nuclear engineering, Wireless Sensor Networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
gold