
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reducing the Impacts of Electric Vehicle Charging on Power Distribution Transformers

This article investigates the effects of high penetration levels of Electric Vehicle (EV) charging on power distribution transformers and proposes a new solution to minimize its negative impacts. There has been growing concern over Greenhouse Gas (GHG) emissions within the transportation sector, which accounts for about 23% of total energy-related carbon-dioxide emissions. The main solution to this problem is the electrification of vehicles. However, large scale integration of EVs into existing grid systems poses some challenges. One major challenge is the accelerated aging of expensive grid assets such as transformers. In this article, a demand response mechanism based on the thermal loading of transformers, is proposed. The proposed solution is modeled as an optimization problem, where a new time of use (ToU) tariff is used to shift the EV load considering the thermal loading of transformers, thereby minimizing their accelerated aging. The simulation results show that the accelerated aging of transformers can be reduced without augmenting the existing grid.
- Edith Cowan University Australia
- Utah Valley University United States
- Utah Valley University United States
- Edith Cowan University Australia
loss of life (LoL), [RSTDPub], time of use (ToU) tariff, distribution transformer thermal aging, 600, Electrical and Computer Engineering, TK1-9971, Electric vehicles (EVs), Electrical engineering. Electronics. Nuclear engineering
loss of life (LoL), [RSTDPub], time of use (ToU) tariff, distribution transformer thermal aging, 600, Electrical and Computer Engineering, TK1-9971, Electric vehicles (EVs), Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
