
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm

handle: 10072/408377
The development and deployment of an effective wind speed forecasting technology can improve the safety and stability of power systems with significant wind penetration. Due to the wind’s unpredictable and unstable qualities, accurate forecasting of wind speed and power is extremely challenging. Several algorithms were proposed for this purpose to improve the level of forecasting reliability. The Long Short-Term Memory (LSTM) network is a common method for making predictions based on time series data. This paper proposed a machine learning algorithm, called Adaptive Dynamic Particle Swarm Algorithm (AD-PSO) combined with Guided Whale Optimization Algorithm (Guided WOA), for wind speed ensemble forecasting. The AD-PSO-Guided WOA algorithm selects the optimal hyperparameters value of the LSTM deep learning model for forecasting of wind speed. In experiments, a wind power forecasting dataset is employed to predict hourly power generation up to forty-eight hours ahead at seven wind farms. This case study is taken from the Kaggle Global Energy Forecasting Competition 2012 in wind forecasting. The results demonstrated that the AD-PSO-Guided WOA algorithm provides high accuracy and outperforms several comparative optimization and deep learning algorithms. Different tests’ statistical analysis, including Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), confirms the accuracy of the presented algorithm.
- Taif University Saudi Arabia
- Mansoura University Egypt
- Taif University Saudi Arabia
- Griffith University Australia
- King Khalid University Saudi Arabia
Artificial intelligence, guided whale optimization algorithm, Other engineering, forecasting, TK1-9971, Meteorology, Engineering, machine learning, Information and computing sciences, Electrical engineering. Electronics. Nuclear engineering, optimization
Artificial intelligence, guided whale optimization algorithm, Other engineering, forecasting, TK1-9971, Meteorology, Engineering, machine learning, Information and computing sciences, Electrical engineering. Electronics. Nuclear engineering, optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
