
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mitigation of the Electric and Magnetic Fields of 500-kV Overhead Transmission Lines

The electric and magnetic fields of overhead high voltage transmission lines are still a critical problem for new construction because of their biological effects on the human body. This issue has been a subject of scientific interest and public concern for the risk of the electric and magnetic fields on living organisms. Accordingly, the overhead transmission lines are considered a source of such this risk due to their high electric and magnetic fields in the populated areas. Because of the recent concerns that electric besides magnetic fields, generated by overhead transmission lines, electric power researchers have been trying to find effective methods for the mitigation of the electrical and magnetic fields to be in the range of acceptable limits. Researchers have been trying to find transmission line geometries that will reduce these electric and magnetic fields. Therefore, in this article two novel methods of reducing the electric and magnetic fields are discussed, one is to change the position of the center phase to optimize the delta configuration and the other is to use more than two shielding wires with calculating the currents in these wires. The obtained results of the two proposed methods are compared with the electric as well as magnetic fields, and the right-of-way values of the present conventional configuration. Additionally, this article presents a case study carried out on an Egyptian 500 kV high voltage overhead transmission line for the mitigation of magnetic and electric field intensities.
- University of Zurich Switzerland
- Aalto University Finland
- Aswan University Egypt
- Banha University Egypt
- Banha University Egypt
ta213, biological effects of electromagnetic, TK1-9971, Mitigation of the electrical and magnetic fields, numerical methods, Electrical engineering. Electronics. Nuclear engineering, overhead power transmission lines
ta213, biological effects of electromagnetic, TK1-9971, Mitigation of the electrical and magnetic fields, numerical methods, Electrical engineering. Electronics. Nuclear engineering, overhead power transmission lines
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
