Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meta Heuristic and Nature Inspired Hybrid Approach for Home Energy Management Using Flower Pollination Algorithm and Bacterial Foraging Optimization Technique

Authors: Nasir Khan; Ali Mohiuddin; Nadeem Javaid; Muhammad Awais; Abdul Mateen; Malik Abdul Rehman;

Meta Heuristic and Nature Inspired Hybrid Approach for Home Energy Management Using Flower Pollination Algorithm and Bacterial Foraging Optimization Technique

Abstract

Nowadays, different schemes and ways are proposed to meet the user's load requirement of energy towards the Demand Side (DS) in order to encapsulate the energy resources. However, this Load Demand (LD) increases day by day. This increase in LD is causing serious energy crises to the utility and DS. As the usage of energy increases with the increase in user's demand respectively, the peak is increased in these hours which affect the customer's in term of high-cost prices. This issue is tackled using some schemes and their proper integration. Two-way communication is done by the utility through Smart Grid (SG) between utility and customers. Customers that show some good behavior and helps the utility to control this LD, can perform a key role here. In this paper, our main focus is to control the Customer Side Management (CSM) by reducing the peak generation from on-peak hours. In our scenario, we focus on saving the cost expenditure of users by giving them comfort and shifting the load of appliances from high LD hours to low LD hours. In this study, we adopt the optimization algorithms, like Bacterial Foraging Optimization Algorithm (BFOA), Flower Pollination Algorithm (FPA) and proposed our Hybrid Bacterial Flower Pollination Algorithm (HBFPA) to optimize the solution of our problem using the famous electricity scheme named as Critical Peak Pricing(CPP) with three different Operational Time intervals (OTIs). Simulations and results show that our scheme reduces the cost and peak to the average ratio by proper shifting the appliances from highly load demanding hours to the low demanding hours with the negligibly small difference between the maximum and minimum 90% of confidence interval.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average