
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization Model and PID Temperature Control System Design for CO2 Capture Process by CaO Carbonation-CaCO3 Calcination Cycles
Optimization Model and PID Temperature Control System Design for CO2 Capture Process by CaO Carbonation-CaCO3 Calcination Cycles
CO2 capture processes by carbonation-calcination cycles of CaO/CaCO3 were limited by the carbonation conversion and sorbents reutilization with the number of carbonation/calcinations cycles. In order to optimizing the CaO/CaCO3 cycles, BP neural network model and PID temperature control system were established based on the simulation of the process parameters and dynamic characteristics. The carbonization/calcination temperature, the mass fraction of additives for sorbents and calcination time were selected for the input conditions, while the output conditions were capture capacity and the reutilization of sorbents. Genetic algorithm(GA) model is established to optimize the PID controller's proportional coefficient kP, integral coefficient kI, and differential coefficient kD. The results indicated that BPNN coupled with PID model could form a complete optimization strategy for CO2 capture process by CaO/CaCO3 cycles. Keywords-CO2 capture; CaO/CaCO3 cycles; BPNN; GA; PID controller;
- Dalhousie University Canada
- CHINA ELECTRIC POWER RESEARCH INSTITUTE (SEAL) SOE China (People's Republic of)
- CHINA ELECTRIC POWER RESEARCH INSTITUTE (SEAL) SOE China (People's Republic of)
- North China Electric Power University China (People's Republic of)
- North China Electric Power University China (People's Republic of)
12 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
