Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://hub.hku.hk/bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://hub.hku.hk/bitstream/10...
Conference object
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.1109/aupec....
Conference object . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Conference object . 2015
Data sources: HKU Scholars Hub
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance and stability assessment of future grid scenarios for the Australian NEM

Authors: Verbic, G; Marzooghi, H; Hill, DJ;

Performance and stability assessment of future grid scenarios for the Australian NEM

Abstract

Shifting towards higher penetration of diverse renewable energy sources (RESs) in power systems is motivated mainly by reducing carbon emissions. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become more challenging. Also, displacing conventional generators with RESs, especially inverter-based and intermittent RESs, could have significant effects on performance and stability of FGs. So far, FG feasibility studies have mostly considered simple balancing, but largely neglected network related issues such as line overload and stability. The main contribution of this paper is to present a simulation platform for performance and stability assessment of FG scenarios. As a case study, preliminary results on the balancing and stability of the Australian National Electricity Market in 2020 are illustrated with the increased penetration of wind and solar generation in the grid. Simulation results illustrate the importance of power system stability assessment for FG feasibility studies. Keywords—Balancing, electricity market, future grids, power system stability, renewable energy sources

Country
China (People's Republic of)
Related Organizations
Keywords

Electricity market, Future grids, Power system stability, Balancing, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%