
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On a Modeling Approach to Analyze Resilience of a Smart Grid Infrastructure
doi: 10.1109/edcc.2014.34
handle: 20.500.14243/265606
The evolution of electrical grids, both in terms of enhanced ICT functionalities to improve efficiency, reliability and economics, as well as the increasing penetration of renewable redistributed energy resources, results in a more sophisticated electrical infrastructure which poses new challenges from several perspectives, including resilience and quality of service analysis. In addition, the presence of interdependencies, which more and more characterize critical infrastructures (including the power sector), exacerbates the need for advanced analysis approaches, to be possibly employed since the early phases of the system design, to identify vulnerabilities and appropriate countermeasures. In this paper, we outline an approach to model and analyze smart grids and discuss the major challenges to be addressed in stochastic model-based analysis to account for the peculiarities of the involved system elements. Representation of dynamic and flexible behavior of generators and loads, as well as representation of the complex ICT control functions required to preserve and/or re-establish electrical equilibrium in presence of changes need to be faced to assess suitable indicators of the resilience and quality of service of the smart grid. © 2014 IEEE.
critical infrastructures, Smart grids, cyber-physical systems, resilience indicators, stochastic modeling
critical infrastructures, Smart grids, cyber-physical systems, resilience indicators, stochastic modeling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
