
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Advanced smart metering infrastructure for future smart homes
Smart buildings and homes are becoming a key player in the future green and sustainable energy grid, due to the integration of distributed energy sources and the demand control capabilities. Advanced smart metering systems are required for the operation of the future smart grid. Smart metering systems allow to monitor the energy consumption of end-users, while provides useful information regarding power quality. The information provided by these systems is used by the system operator to enhance the energy supply, and several techniques, as load scheduling, demand side management, non-intrusive load monitoring, can be applied for this purpose. This paper shows an advanced smart metering infrastructure for integration in future smart homes, where not only the electrical consumption is monitored, but also the gas, water, and heating. Therefore, by monitoring all energy systems in the building, the users could be aware of their whole energy consumption, and advanced control techniques can achieved by the Energy Management Systems (EMS).
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Denmark
- University of Córdoba Spain
- Aalborg University Denmark
Meter reading, Smart homes, Energy management
Meter reading, Smart homes, Energy management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
