
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction
handle: 20.500.11787/4188
Solar energy is one of the most affordable and clean renewable energy source in the world. Hence, the solar energy prediction is an inevitable requirement in order to get the maximum solar energy during the day time and to increase the efficiency of solar energy systems. For this purpose, this paper predicts the daily total energy generation of an installed photovoltaic system using the Naive Bayes classifier. In the prediction process, one-year historical dataset including daily average temperature, daily total sunshine duration, daily total global solar radiation and daily total photovoltaic energy generation parameters are used as the categorical-valued attributes. By means of the Naive Bayes application, the sensitivity and the accuracy measures are improved for the photovoltaic energy prediction and the effects of other solar attributes on the photovoltaic energy generation are evaluated.
- Yüzüncü Yıl University Turkey
- Yüzüncü Yıl University Turkey
- Gazi University Turkey
- Gazi University Turkey
- Nevşehir Hacı Bektaş Veli University Turkey
Solar energy, Prediction, Naïve Bayes, PV system
Solar energy, Prediction, Naïve Bayes, PV system
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
