

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Bidding in Local Energy Markets using Evolutionary Computation
Increased adoption of distributed resources and renewables in distribution networks has led to a significant interest in local energy transactions at lower levels of the energy supply chain. Local energy markets (LM) are expected to play a crucial part in guaranteeing the balance between generation and consumption and contribute to the reduction of carbon emissions. Besides, LMs aim at increasing the participation of small end-users in energy transactions, setting the stage for transactive energy systems. In this work, we explore the use of evolutionary algorithms (EAs) to solve a bi-level optimization problem that arises when trading energy in an LM. We compare the performance of different EAs under a realistic case study with nine agents trading energy in the day-ahead LM. Results suggest that EAs can provide solutions in which all agents can improve their profits. It is shown the advantages in terms of profits that an LM can bring to market participants, thereby increasing the tolerable penetration of renewable resources and facilitating the energy transition.
- International Student Exchange Programs United States
- Polytechnic Institute of Porto Portugal
- International Student Exchange Programs United States
Local energy market, Renewable energy, Bi-level optimization, Evolutionary computation, Differential evolution
Local energy market, Renewable energy, Bi-level optimization, Evolutionary computation, Differential evolution
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 39 download downloads 51 - 39views51downloads
Data source Views Downloads ZENODO 39 51


