
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Upconverter Silicon Solar Cell Devices for Efficient Utilization of Sub-Band-Gap Photons Under Concentrated Solar Radiation

Upconversion (UC) of sub-band-gap photons has the potential to increase the efficiency of solar cells significantly. We realized an upconverter solar cell device, by attaching an upconverter layer of β-NaYF4 doped with 25% Er3+ embedded in the polymer perfluorocyclobutyl to the rear side of a bifacial silicon solar cell. We determined the external quantum efficiency of such upconverter solar cell devices under broad-band sub-band-gap excitation. Under consideration of spectral mismatch, we calculated the expected increase of the short-circuit current density due to UC under the air mass 1.5 global illumination. We determined an enhancement of 2.2 mA/cm2 for a spectral excitation band ranging from 1450 to 1600 nm and a comparatively low solar concentration of 78 suns. Subsequently, a system of concentrator lens and upconverter solar cell device was characterized with a solar simulator. We determined an increase of the short-circuit current density due to UC of sub-band-gap photons of 13.1 mA/cm2 under a concentration of 210 suns. This corresponds to a potential relative increase of the solar cell efficiency of 0.19%.
- Fraunhofer Society Germany
- Fraunhofer Institute for Solar Energy Systems Germany
- Heriot-Watt University United Kingdom
- University of Freiburg Germany
- University of Bern Switzerland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
