
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Role of Textured Silicon Surface in Plasmonic Light Trapping for Solar Cells: The Effect of Pyramids Width and Height

Silicon solar cells with different front texturization are used for understanding pyramidal size influence on plasmonic light trapping. Cells with different pyramidal heights and widths have shown strong light back scattering in the surface plasmon resonance (SPR) region and minimal light forward scattering in the off-resonance region of silver nanoparticles (NPs). On the other hand, cell surface with similar pyramidal heights and widths has shown reduced back scattering in the SPR region, as well as enhanced light forward scattering in the off-resonance region of NPs with good optical impedance matching. The reason for these types of light interaction with NPs (nanoscale) and textured silicon (micrometer-scale) is explained, and plasmonic textured silicon solar cell performance with different pyramidal sizes using quantum efficiency measurements is verified.
Textured Surface, Surface Plasmon Resonance (Spr), Silicon Solar Cell, Plasmonics, 535, Light Trapping
Textured Surface, Surface Plasmon Resonance (Spr), Silicon Solar Cell, Plasmonics, 535, Light Trapping
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
