
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizations of GaAs Nanowire Solar Cells

The efficiency of GaAs nanowire solar cells can be significantly improved without any new processing steps or material requirements. We report coupled optoelectronic simulations of a GaAs nanowire (NW) solar cell with vertical p-i-n junction and high band gap AlInP passivating shell. Our frequency-dependent model facilitates calculation of quantum efficiency for the first time in NW solar cells. For passivated NWs, we find that short-wavelength photons can be most effectively harnessed by using a thin emitter while long-wavelength photons are best utilized by extending the intrinsic region to the nanowire/substrate interface, and using the substrate as a base. These two easily implemented changes, coupled with the increase of NW height to 3.5 um with realistic surface recombination in the presence of a passivation shell, result in a NW solar cell with greater than 19% efficiency.
6 pages + 3 pages appendices
- University of Ottawa Canada
- McMaster University Canada
- University of Ottawa Canada
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
