Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eco-Friendly NaSbS2 Quantum Dot-Sensitized Solar Cells

Authors: Wei-Chi Sun; Siti Utari Rahayu; Ming-Way Lee;

Eco-Friendly NaSbS2 Quantum Dot-Sensitized Solar Cells

Abstract

Ternary sulfide NaSbS2 is a low-cost, environment-friendly semiconductor that has rarely been studied. This paper demonstrates, for the first time, solid-state NaSbS2 quantum dot-sensitized solar cells (QDSSCs). NaSbS2 nanoparticles were synthesized using the sequential ionic layer adsorption reaction method. Solid-state QDSSCs were fabricated from the synthesized nanoparticles using spiro-OMeTAD as the hole-transporting electrolyte. The best cell yielded an efficiency of 1.27% under 1 sun. At the reduced light intensity I 0 of 10% sun, the efficiency increased significantly to 4.11% with an open-circuit voltage $V_{{\text{oc}}}$ of 0.51 V, a short-circuit current density J sc of 1.68 mA/cm2, and a fill factor (FF) of 47.8%. A sublinear power law of J sc∝ I 0 0.52 accounts for the large improvement in performance under low-light intensities because of the reduced carrier recombination. The external quantum efficiency (EQE) spectrum covered the spectral region of 300–750 nm with a maximum EQE value of 72% at λ = 450 nm. The present efficiency (4.11%) represents about 30% improvement over the best previous result (3.18%) of liquid-junction QDSSCs. The respectable efficiency indicates that NaSbS2 shows potential as an efficient solar absorber material.

Country
Taiwan
Keywords

solar cell, sensitizer, sodium antimony sulfide, quantum dot (QD), NaSbS2, solid state

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Related to Research communities
Energy Research