Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

266-nm ps Laser Ablation for Copper-Plated p-Type Selective Emitter PERC Silicon Solar Cells

Authors: Hsiao, PC; Song, N; Wang, X; Shen, X; Phua, B; Colwell, J; Romer, U; +5 Authors

266-nm ps Laser Ablation for Copper-Plated p-Type Selective Emitter PERC Silicon Solar Cells

Abstract

Application of 266-nm picosecond (ps) laser ablation and copper (Cu)-plated metallization to p-type selective emitter (SE) passivated emitter and rear cells (PERC) is reported in this paper. Use of a 266-nm ps laser resulted in similar laser-induced periodic surface structures as observed for 355-nm ps laser ablation of a silicon (Si) nitride antireflection coating (ARC) on random-textured Si solar cell surfaces. In addition, it is shown that 266-nm ps laser ablation results in the formation of amorphous Si with an underlying distorted crystalline Si layer at the laser-ablated surfaces. The successful alignment of laser-ablated openings to the heavily doped SE regions resulted in a comparable cell efficiency of Cu-plated SE PERC cells to screen-printed controls, with a maximum cell efficiency of 20.6% being achieved for the Cu-plated cells. The plated cell performance was limited by the recombination losses, and in particular nonideal recombination caused by the use of a shallow emitter, which had been optimized for screen-printed metallization. Engineering of an SE with a junction depth of 0.52 μ m in the heavily doped regions resulted in a 0.3% absolute increase in pseudo fill factor and demonstrated the importance of displacing the p-n junction from the laser-ablated Si surface. Although 355-nm ps laser ablation has been demonstrated to result in strong busbar adhesion in previous reports of Cu-plated cells, significant variability in the busbar adhesion of the fully plated SE PERC cells resulted by 266-nm ps laser ablation. The predicted increased sensitivity of 266-nm laser ablation to the ARC thickness and the possibility that surface oxides were not uniformly removed across wafers before plating may have affected the uniformity of silicide formation and hence the adhesion of the plated busbars.

Country
Australia
Related Organizations
Keywords

anzsrc-for: 4009 Electronics, anzsrc-for: 4016 Materials Engineering, anzsrc-for: 0912 Materials Engineering, 530, 4016 Materials Engineering, 620, anzsrc-for: 40 Engineering, anzsrc-for: 0206 Quantum Physics, sensors and digital hardware, anzsrc-for: 0906 Electrical and Electronic Engineering, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Green
Related to Research communities
Energy Research