
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Degradation Mechanism in Cu(In,Ga)Se2 Material and Solar Cells Due to Moisture and Heat Treatment of the Absorber Layer

The impact of moisture and heat treatment on the microstructural, chemical, and electrical properties of Cu(In,Ga)Se2 films and their collective effect on the solar cell device performance was studied. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy measurements show that water exposure causes surface modification and alters the alkali metal distribution, while no composition or structural effect was observed. Deep level transient and optical spectroscopies revealed that the trap densities ( NT ) for both the EV + 0.65 eV and EV + 0.98 eV traps increase after water exposure, while the majority carrier concentration ( NA ) decreases. Time-resolved photoluminescence (PL) and steady-state PL measurements indicated the presence of static, not dynamic, quenching. Reduction of open-circuit voltage ( V OC) and fill factor (FF) was observed for the devices but was not associated with a change of recombination mechanism, which remains in the absorber space charge region. A small increase in series resistance and shunt conductance accounts for most of the FF change, while the modification in both NA and NT yield most of the change in V OC. A gradient of majority carrier concentration, related to the alkali profile, also yields a small voltage-dependent current collection after moisture and heat treatment.
- The Ohio State University at Marion United States
- North Carolina Agricultural and Technical State University United States
- Colorado School of Mines United States
- University System of Ohio United States
- Old Dominion University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
