Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Phot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State

Authors: Benjamin Hammann; Josh Engelhardt; David Sperber; Axel Herguth; Giso Hahn;

Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State

Abstract

Light and elevated temperature induced degradation (LeTID) kinetics in float-zone silicon are investigated by varying the initial sample state, composed of different base material, base doping, SiN x :H films, and subsequent firing, and/or annealing steps. The approach of deliberately changing the initial sample state is shown to allow for specific studies of influences of LeTID kinetics. Bulk- and surface-related degradations are examined separately and the influence on the kinetics of bulk- and surface-related degradation is illustrated by a four-state and three-state model, respectively. In case of bulk-related degradation, an increase in defect density because of the firing step is shown, whereas the annealing step has an inverse effect. Both temperature steps—individually and combined—influence the transition rates of bulk-related degradation and regeneration by presumably changing the distribution of a defect precursor. For surface-related degradation, the firing step reduces the transition rate from the initial to the degraded state. In addition, the influence of a comparably humid atmosphere and the absence of UV light are found to be negligible.

Country
Germany
Related Organizations
Keywords

537, info:eu-repo/classification/ddc/530, 530

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research