Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Photovoltaics
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of PV Module Power Loss and Cell Crack Effects Due to Accelerated Aging Tests and Field Exposure

Authors: Cara Libby; Bijaya Paudyal; Xin Chen; William B. Hobbs; Daniel Fregosi; Anubhav Jain;

Analysis of PV Module Power Loss and Cell Crack Effects Due to Accelerated Aging Tests and Field Exposure

Abstract

This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.

Country
United States
Keywords

Aging, Quantum Physics, cell cracks, Materials engineering, 621, Materials Engineering, 620, photovoltaic, Engineering, Accelerated testing, Electrical and Electronic Engineering, Electronics, sensors and digital hardware, Electrical Engineering, performance, degradation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid
Related to Research communities
Energy Research