
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of PV Module Power Loss and Cell Crack Effects Due to Accelerated Aging Tests and Field Exposure

This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.
- Lawrence Berkeley National Laboratory United States
- Electric Power Research Institute United States
- Southern Company (United States) United States
- Lawrence Berkeley National Laboratory United States
- University of California System United States
Aging, Quantum Physics, cell cracks, Materials engineering, 621, Materials Engineering, 620, photovoltaic, Engineering, Accelerated testing, Electrical and Electronic Engineering, Electronics, sensors and digital hardware, Electrical Engineering, performance, degradation
Aging, Quantum Physics, cell cracks, Materials engineering, 621, Materials Engineering, 620, photovoltaic, Engineering, Accelerated testing, Electrical and Electronic Engineering, Electronics, sensors and digital hardware, Electrical Engineering, performance, degradation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
