
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Outdoor Characterization of Solar Cells With Microstructured Antireflective Coating in a Concentrator Photovoltaic Monomodule

Micro-structured anti reflective coatings (ARC) have been identified as a promising solution to reduce optical losses in Concentrator Photovoltaics modules (CPV). We fabricated and tested in field a CPV modules made of 4 sub-modules with a concentration factor of 250x, that embed either solar cells with micro-structured encapsulating ARC or solar cells with multilayer ARC as a reference. The micro-structured encapsulating ARC was made of semi-buried silica beads in polydimethylsiloxane (PDMS). The module was in operation for 1 year in the severe climatic conditions of Sherbrooke, Quebec, Canada, before extracting the sub-modules performance under Concentrator Standard Operating Condition (CSOC). An acceptance angle of +/-0.78 degree was determined for all sub-modules, demonstrating that improving angular collection at the cell level has no significant impact on the angle of acceptance at the module level. We report an increase of 12 to 14% of the short-circuit current and of 15 to 19% of maximum power at CSOC for solar cells with a micro structured encapsulating ARC compared to the reference. Despite a sub-optimal module design, we report a sub-module efficiency of 29.7% at CSOC for a cell with micro-structured encapsulating ARC. This proves the potential of micro-structured encapsulating ARC to improve CPV system performance and shows promise of reliability for sumi-buried microbeads in PDMS as encapsulating ARC.
6 pages 6 figures 3 tables
- Université de Sherbrooke Canada
- Grenoble Alpes University France
photovoltaics, [SPI]Engineering Sciences [physics], outdoor characterization, anti reflective coating, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, concentrator photovoltaics
photovoltaics, [SPI]Engineering Sciences [physics], outdoor characterization, anti reflective coating, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, concentrator photovoltaics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
