
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture

Agriculture Cyber-Physical System (A-CPS) is becoming increasingly important in enhancing crop quality and productivity by utilizing minimum cropland. This paper introduces the innovative idea of the Internet-of-Agro-Things (IoAT) with an explanation of the automatic detection of plant disease for the development of ACPS. Majority of the crops were infected by microbial diseases in conventional agriculture. Also, the constantly mutating pathogens cannot be known to the knowledge of the farmer, due to which, there arises a demand to develop a disease prediction system. To prevent this, we use a trained Convolutional Neural Network (CNN) model to perform an analysis of the crop image captured by a health maintenance system. The image capturing along with continuous sensing and intelligent automation is performed by the solar sensor node. The sensor node houses a developed soil moisture sensor which has a high longevity compared to its peers. A real time implementation of the proposed system is demonstrated using a solar sensor node with a camera module, a microcontroller and a smartphone application using which a farmer can monitor the field. The prototype was deployed for three months and has achieved a robust performance by remaining rust-free and sustaining the varied weather conditions. An accuracy of 99.24% is achieved by the proposed plant disease prediction framework.
automatic crop disease protections, smart agriculture, A-CPS, solar energy, Internet-of-Agro-Things, machine learning, convolutional neural networks, sensor nodes, agriculture cyber-physical systems, CNN
automatic crop disease protections, smart agriculture, A-CPS, solar energy, Internet-of-Agro-Things, machine learning, convolutional neural networks, sensor nodes, agriculture cyber-physical systems, CNN
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
