Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Sensors Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Sensors Journal
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture

Authors: Venkanna Udutalapally; Saraju P. Mohanty; Vishal Pallagani; Vedant Khandelwal;

sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture

Abstract

Agriculture Cyber-Physical System (A-CPS) is becoming increasingly important in enhancing crop quality and productivity by utilizing minimum cropland. This paper introduces the innovative idea of the Internet-of-Agro-Things (IoAT) with an explanation of the automatic detection of plant disease for the development of ACPS. Majority of the crops were infected by microbial diseases in conventional agriculture. Also, the constantly mutating pathogens cannot be known to the knowledge of the farmer, due to which, there arises a demand to develop a disease prediction system. To prevent this, we use a trained Convolutional Neural Network (CNN) model to perform an analysis of the crop image captured by a health maintenance system. The image capturing along with continuous sensing and intelligent automation is performed by the solar sensor node. The sensor node houses a developed soil moisture sensor which has a high longevity compared to its peers. A real time implementation of the proposed system is demonstrated using a solar sensor node with a camera module, a microcontroller and a smartphone application using which a farmer can monitor the field. The prototype was deployed for three months and has achieved a robust performance by remaining rust-free and sustaining the varied weather conditions. An accuracy of 99.24% is achieved by the proposed plant disease prediction framework.

Country
United States
Keywords

automatic crop disease protections, smart agriculture, A-CPS, solar energy, Internet-of-Agro-Things, machine learning, convolutional neural networks, sensor nodes, agriculture cyber-physical systems, CNN

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 1%
Top 10%
Top 1%
bronze