
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon

handle: 1893/26962
Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon
NASA's Global Ecosystem Dynamic Investigation (GEDI) mission has been designed to measure forest structure using lidar waveforms to sample the earth's vegetation while in orbit aboard the International Space Station. In this paper, we used airborne large-footprint (LF) lidar measurements to simulate GEDI observations from which we retrieved ground elevation, vegetation height, and aboveground biomass (AGB). GEDI-like product accuracy was then assessed by comparing them to similar products derived from airborne small-footprint (SF) lidar measurements. The study focused on tropical forests and used data collected during the NASA and European Space Agency (ESA) AfriSAR ground and airborne campaigns in the Lope National Park in Central Gabon. The measurements covered a gradient of successional stages of forest development with different height, canopy density, and topography. The comparison of the two sensors shows that LF lidar waveforms and simulated waveforms from SF lidar are equivalent in their ability to estimate ground elevation (RMSE = 0.5 m, bias = 0.29 m) and maximum forest height (RMSE = 2.99 m, bias = 0.24 m) over the study area. The difference in the AGB estimated from both lidar instruments at the 1-ha spatial scale is small over the entire study area (RMSE = 6.34 Mg·ha −1, bias = 11.27 Mg·ha−1) and the bias is attributed to the impact of ground slopes greater than 10–20° on the LF lidar measurements of forest height. Our results support the ability of GEDILF lidar to measure the complex structure of humid tropical forests and provide AGB estimates comparable to SF-derived ones.
- University of Stirling United Kingdom
- University of Alcalá Spain
- University System of Ohio United States
- Ohio Agricultural Research and Development Center United States
- California Institute of Technology United States
Vegetation mapping, tropical forest, Measurement, 550, Sensors, Earth, 910, Remote sensing, 333, land, Laser radar, AfriSAR, vegetation, Global Ecosystem Dynamic Investigation (GEDI), and ice sensor (LVIS), Biomass, Gabon, lidar
Vegetation mapping, tropical forest, Measurement, 550, Sensors, Earth, 910, Remote sensing, 333, land, Laser radar, AfriSAR, vegetation, Global Ecosystem Dynamic Investigation (GEDI), and ice sensor (LVIS), Biomass, Gabon, lidar
1 Research products, page 1 of 1
- 2002IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
