
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermostatic load control for system frequency regulation considering daily demand profile and progressive recovery
Large-scale wind and solar power integration are likely to cause a short-term mismatch between generation and load demand because of the intermittent nature of the renewables. System frequency is therefore challenged. In recent years, it has been proposed that a part of the residential load can be controlled for frequency regulation with little impact on customer comfort. This paper proposes a thermostatic load control strategy for primary and secondary frequency regulation, in particular, using heating, ventilation, and air-conditioning units and electric water heaters. First, daily demand profile modeling indicates that these two loads are complementary in the daytime and can provide a relatively stable frequency reserve. Second, the progressive load recovery is specifically considered in the control scheme. The random switching and cycle recovery method is proposed for mitigating power rebound after switching the air conditioners on again. The proposed control strategy can organize a large population of thermostatic loads for the provision of a frequency reserve. Consequently, the requirement of a spinning reserve is reduced. Finally, the proposed control strategy is verified by the dynamic simulation of IEEE RTS 24-bus system.
- University of Tennessee at Knoxville United States
- Tennessee State University United States
- Tennessee State University United States
- Global Energy Interconnection Research Institute North America United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).61 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
