Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://digital.library.unt.ed...
Conference object
Data sources: UnpayWall
https://doi.org/10.1109/pvsc.2...
Conference object . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combinatorial optimization of transparent conducting oxides (TCOs) for PV

Authors: Perkins, J. D.; Taylor, M. P.; van Hest, M. F. A. M.; Teplin, C. W.; Alleman, J. L.; Dabney, M. S.; Gedvilas, L. M.; +6 Authors

Combinatorial optimization of transparent conducting oxides (TCOs) for PV

Abstract

Transparent conducting oxides (TCOs) can serve a variety of important functions in thin film photovoltaics such as transparent electrical contacts, antireflection coatings and chemical barriers. Two areas of particular interest are TCOs that can be deposited at low temperatures and TCOs with high carrier mobilities. We have employed combinatorial high-throughput approaches to investigate both these areas. Conductivities of /spl sigma/ = 2500 /spl Omega//sup -1/-cm/sup -1/ have been obtained for In-Zn-O (IZO) films deposited at 100/spl deg/C and /spl sigma/ > 5000 /spl Omega//sup -1/-cm/sup -1/ for In-Ti-O (ITiO) and In-Mo-O (IMO) films deposited at 550/spl deg/C. The highest mobility obtained was 83 cm/sup 2//V-sec for ITiO deposited at 550/spl deg/C.

Country
United States
Keywords

Optimization, Thin Films, 36 Materials Science, Polymer Substrate, Imo, Solar Energy - Photovoltaics, Antireflection Coatings, Transparent Electrical Contacts, 14 Solar Energy, Oxides, Pv, Thin Film, Transparent Conducting Oxides (Tcos), Chemical Barriers, Solar Energy Pv

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Related to Research communities
Energy Research