Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Scholarship at UWindsor
Other literature type . 2021
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncertainty-Aware Management of Smart Grids Using Cloud-Based LSTM-Prediction Interval

Authors: Seyede Zahra Tajalli; Abdollah Kavousi-Fard; Mohammad Mardaneh; Abbas Khosravi; Roozbeh Razavi-Far;

Uncertainty-Aware Management of Smart Grids Using Cloud-Based LSTM-Prediction Interval

Abstract

This article introduces an uncertainty-aware cloud-fog-based framework for power management of smart grids using a multiagent-based system. The power management is a social welfare optimization problem. A multiagent-based algorithm is suggested to solve this problem, in which agents are defined as volunteering consumers and dispatchable generators. In the proposed method, every consumer can voluntarily put a price on its power demand at each interval of operation to benefit from the equal opportunity of contributing to the power management process provided for all generation and consumption units. In addition, the uncertainty analysis using a deep learning method is also applied in a distributive way with the local calculation of prediction intervals for sources with stochastic nature in the system, such as loads, small wind turbines (WTs), and rooftop photovoltaics (PVs). Using the predicted ranges of load demand and stochastic generation outputs, a range for power consumption/generation is also provided for each agent called "preparation range" to demonstrate the predicted boundary, where the accepted power consumption/generation of an agent might occur, considering the uncertain sources. Besides, fog computing is deployed as a critical infrastructure for fast calculation and providing local storage for reasonable pricing. Cloud services are also proposed for virtual applications as efficient databases and computation units. The performance of the proposed framework is examined on two smart grid test systems and compared with other well-known methods. The results prove the capability of the proposed method to obtain the optimal outcomes in a short time for any scale of grid.

Country
Canada
Keywords

Load management, Multi-agent systems, multiagent system, Energy management, Uncertainty, deep learning, Indexes, Smart grids, Generators, demand response, prediction intervals, uncertainty-aware management., Cloud-fog architecture

Powered by OpenAIRE graph
Found an issue? Give us feedback