Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Dependable and Secure Computing
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Privacy-Preserving and Collusion-Resistant Charging Coordination Schemes for Smart Grids

Authors: Mohamed Baza; Marbin Pazos-Revilla; Ahmed Sherif; Mahmoud Nabil; Abdulah Jeza Aljohani; Mohamed Mahmoud; Waleed Alasmary;

Privacy-Preserving and Collusion-Resistant Charging Coordination Schemes for Smart Grids

Abstract

In this paper, we propose centralized and decentralized privacy-preserving and collusion-resistant charging coordination schemes for Energy Storage Units (ESUs). The centralized charging coordination (CCC) scheme is useful where robust communication infrastructure is available that connects ESUs to a charging coordinator (CC), whereas the decentralized charging coordination (DCC) scheme is useful in remote areas and isolated microgrids. In CCC scheme, ESUs acquire tokens to send charging request anonymously to the CC via local aggregators. So, if the CC and the aggregator collude, they cannot identify requests' senders. To prevent linkability attacks, ESUs sends multiple requests with random Time to complete charge (TCC) and state of charge (SoC). Then, the CC compute schedules to maximize the power delivered to ESUs. In DCC scheme, charging is coordinated using a privacy-preserving data aggregation technique. Each ESU selects some ESUs as proxies, and shares a secret mask with each proxy. Then, each ESU adds a mask to its request and encrypts it so by aggregating requests, all masks are nullified and the total demand is known. DCC scheme is secure against collusion attacks due to the masking technique. The results of extensive experiments confirm that our schemes are efficient and secure, and preserve ESUs privacy.

Country
United States
Keywords

Optimization, Schedules, 330, Computer Sciences, Collusion attacks, 005, Smart grids, Smart grid, Energy storage units, Spread spectrum communication, 004, Batteries, Privacy-preservation, Privacy, Charging coordination, Physical Sciences and Mathematics, Microgrids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%