
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Joint Workload Scheduling and Energy Management for Green Data Centers Powered by Fuel Cells

The fuel cell is a promising power source for green data centers due to its high energy efficiency, low carbon emissions, and high reliability. However, because of the mechanical limitations related to fuel delivery, fuel cells are slow in adjusting power output when the energy demand quickly changes, which is called limited load following . Many recent work have studied to mitigate the limited load following by using energy storage to adjust energy supply, but achieves limited successes because of the constraint of energy storage size. In this paper, we address this challenge by changing both energy supply and demand, via joint workload scheduling and energy management. Specifically, we consider multiple geo-distributed data centers powered by both fuel cells and energy storage. An online algorithm has been proposed to minimize the gap between energy supply and demand by jointly managing the fuel cells output and migrating workloads among data centers. Simulations results based on real-world traces show that the proposed algorithms can achieve satisfactory performance.
- Nanjing University of Posts and Telecommunications China (People's Republic of)
- University of Aizu Japan
- Hong Kong Polytechnic University China (People's Republic of)
- University of Aizu Japan
- China University of Geosciences China (People's Republic of)
690, Job scheduling, Fuel cell, Cost minimization, 600, Data center, Lyapunov optimization
690, Job scheduling, Fuel cell, Cost minimization, 600, Data center, Lyapunov optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
