Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Academica-e
Article . 2021
Data sources: Academica-e
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Noninvasive Aging Analysis of Lithium-Ion Batteries in Extreme Cold Temperatures

Authors: Adrian Soto; Alberto Berrueta; Ignacio Oficialdegui; Pablo Sanchis; Alfredo Ursua;

Noninvasive Aging Analysis of Lithium-Ion Batteries in Extreme Cold Temperatures

Abstract

This paper presents a non-invasive technical analysis of the degra-dation of four lithium-ion batteries (LIBs) used in extreme frigid weather. In contrast to other studies in which the batteries were tested in laboratory conditions, the LIBs studied in this paper were aged in a real application, more specifically in the WindSled project. In this project, an expedition was made using a zero-emission vehicle drawn by kites, covering more than 2500 kilometers on the East Antarctic Plateau. The study performed in this paper aims to quantify the degradation of the LIBs during the expedition. The results show a 5 % capacity fade, a 30 % increase in the internal resistance and no substantial increase in the impedance of the solid electrolyte interface (SEI). Moreover, no evidence of dendrite growth at the anode is inferred by the interpretation of the distri-bution of relaxation times (DRT), incremental capacity analysis (ICA) and differential voltage analysis (DV). Based on these re-sults, it can be claimed that the LIBs used in the WindSled Project can successfully operate under 50 C. Furthermore, since non-invasive techniques were used to characterize the batteries, they can still be used in upcoming expeditions, with subsequent financial and environmental benefits. This work was supported in part by the Spanish State Research Agency (AEI) under Grant PID2019-111262RB-I00/AEI/10.13039/501100011033, in part by the European Union under the H2020 Project STARDUST under Grant 774094, and in part by the Public University of Navarre through the research project ReBMS PJUPNA1904 and a Ph.D. Scholarship.

Country
Spain
Keywords

Lithium-ion, EIS, Energy storage, Temperature, Battery, Differential voltage analysis (DV), Distribution of relaxation times (DRT), Incremental capacity analysis (ICA)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 23
    download downloads 111
  • 23
    views
    111
    downloads
    Data sourceViewsDownloads
    Academica-e23111
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Average
Top 10%
23
111
Green