Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Informatics
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Accurate and Fast Converging Short-Term Load Forecasting Model for Industrial Applications in a Smart Grid

Authors: Ahmad, Ashfaq; Javaid, Nadeem; Guizani, Mohsen; Alrajeh, Nabil; Khan, Zahoor Ali;

An Accurate and Fast Converging Short-Term Load Forecasting Model for Industrial Applications in a Smart Grid

Abstract

Short-term load forecasting (STLF) models are very important for electric industry in the trade of energy. These models have many applications in the day-to-day operations of electric utilities such as energy generation planning, load switching, energy purchasing, infrastructure maintenance, and contract evaluation. A large variety of STLF models have been developed that trade off between forecast accuracy and convergence rate. This paper presents an accurate and fast converging STLF model for industrial applications in a smart grid. In order to improve the forecast accuracy, modifications are devised in two popular techniques: mutual information based feature selection; and enhanced differential evolution algorithm based error minimization. On the other hand, the convergence rate of the overall forecast strategy is enhanced by devising modifications in the heuristic algorithm and in the training process of the artificial neural network. Simulation results show that accuracy of the newly proposed forecast model is 99.5% with moderate execution time, i.e., we have decreased the average execution of the existing bilevel forecast strategy by 52.38%.

Country
United Kingdom
Keywords

330, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 1%
Top 10%
Top 1%