Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Informatics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secure and Efficient Federated Learning for Smart Grid With Edge-Cloud Collaboration

Authors: Zhou Su; Yuntao Wang; Tom H. Luan; Ning Zhang; Feng Li; Tao Chen; Hui Cao;

Secure and Efficient Federated Learning for Smart Grid With Edge-Cloud Collaboration

Abstract

With the prevalence of smart appliances, smart meters, and Internet of Things (IoT) devices in smart grids, artificial intelligence (AI) built on the rich IoT big data enables various energy data analysis applications and brings intelligent and personalized energy services for users. In conventional AI of Things (AIoT) paradigms, a wealth of individual energy data distributed across users’ IoT devices needs to be migrated to a central storage (e.g., cloud or edge device) for knowledge extraction, which may impose severe privacy violation and data misuse risks. Federated learning, as an appealing privacy-preserving AI paradigm, enables energy data owners (EDOs) to cooperatively train a shared AI model without revealing the local energy data. Nevertheless, potential security and efficiency concerns still impede the deployment of federated-learning-based AIoT services in smart grids due to the low-quality shared local models, non-independently and identically distributed (non-IID) data distributions, and unpredictable communication delays. In this article, we propose a secure and efficient federated-learning-enabled AIoT scheme for private energy data sharing in smart grids with edge-cloud collaboration. Specifically, we first introduce an edge-cloud-assisted federated learning framework for communication-efficient and privacy-preserving energy data sharing of users in smart grids. Then, by considering non-IID effects, we design a local data evaluation mechanism in federated learning and formulate two optimization problems for EDOs and energy service providers. Furthermore, due to the lack of knowledge of multidimensional user private information in practical scenarios, a two-layer deep reinforcement-learning-based incentive algorithm is developed to promote EDOs’ participation and high-quality model contribution. Extensive simulation results show that the proposed scheme can effectively stimulate EDOs to share high-quality local model updates and improve the communication efficiency.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 1%
Top 10%
Top 0.1%