Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Instrumentation and Measurement
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Open-Source Heterogeneous Constrained Edge-Computing Platform for Smart Grid Measurements

Authors: Ashish Joglekar; Gurunath Gurrala; Puneet Kumar; Francis C. Joseph; T. S. Kiran; K. R. Sahasranand; Himanshu Tyagi;

Open-Source Heterogeneous Constrained Edge-Computing Platform for Smart Grid Measurements

Abstract

This article presents a low-cost, open-source, heterogeneous, resource-constrained hardware platform called “Parallella” as a measurement device for edge-computing applications research in smart grid. The unique hardware architecture of the Parallella provides a multitude of edge-computing resources in the form of a Zynq SoC (dual-core ARM + FPGA) and a 16-core co-processor called Epiphany. A multifunctional intelligent electronic device (IED) design is demonstrated to showcase the capabilities of the platform. A custom I/O board has been developed for the desktop and embedded versions of Parallella, which can be interfaced with external daughter boards and peripherals for measurements. One such daughter board is an analog sensing board, which can measure voltages of all the three phases and four line currents using a 16-bit synchronous ADC set at 32 kHz. The ADC samples are synchronized to the PPS time clock of a GPS unit for providing global time reference. These captured seven-channel raw waveform data are sent to a cloud server over a bandwidth-limited communication channel using a custom anomaly-aware data compression algorithm implemented on the ARM. A phasor measurement algorithm using the Teager energy operator (TEO) is implemented on the field-programmable gate array (FPGA). A parallel power quality (PQ) measurement algorithm is implemented on the Epiphany. The obtained measurements are found to be comparable to a commercial power analyzer.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%