
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cooperative Strategy for Optimal Management of Smart Grids by Wavelet RNNs and Cloud Computing

Advanced smart grids have several power sources that contribute with their own irregular dynamic to the power production, while load nodes have another dynamic. Several factors have to be considered when using the owned power sources for satisfying the demand, i.e., production rate, battery charge and status, variable cost of externally bought energy, and so on. The objective of this paper is to develop appropriate neural network architectures that automatically and continuously govern power production and dispatch, in order to maximize the overall benefit over a long time. Such a control will improve the fundamental work of a smart grid. For this, status data of several components have to be gathered, and then an estimate of future power production and demand is needed. Hence, the neural network-driven forecasts are apt in this paper for renewable nonprogrammable energy sources. Then, the produced energy as well as the stored one can be supplied to consumers inside a smart grid, by means of digital technology. Among the sought benefits, reduced costs and increasing reliability and transparency are paramount.
Cloud computing; energy market; forecasting
Cloud computing; energy market; forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
