Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tnse.2...
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convergence Analysis of a Distributed Optimization Algorithm with a General Unbalanced Directed Communication Network

Authors: Huaqing Li; Qingguo Lu; Tingwen Huang;

Convergence Analysis of a Distributed Optimization Algorithm with a General Unbalanced Directed Communication Network

Abstract

In this paper, we discuss a class of distributed constrained optimization problems in power systems where the target is to optimize the sum of all agents’ local convex objective functions over a general unbalanced directed communication network. Each local convex objective function is known exclusively to a single agent, and the agents’ variables are constrained to global coupling linear constraint and individual box constraints. To collaboratively solve the optimization problems, existing distributed methods mostly require the communication network to be balanced or have the knowledge of in-neighbors’ out-degree for all agents, which are quite restrictive and hardly inevitable in practical applications. In contrast, we investigate a novel distributed primal-dual augmented (sub)gradient algorithm which utilizes a row-stochastic matrix (does not need each agent to know its in-neighbors out-degree) and employs uncoordinated step-sizes, and yet exactly converges to the optimal solution over a general unbalanced directed communication network. Under the assumptions of the strong convexity and smoothness on the aggregate objective functions, it is proved that the algorithm geometrically converges to the optimal solution if the uncoordinated step-sizes do not exceed the upper bound. An explicit analysis for the convergence rate of the proposed algorithm is also characterized. To manifest effectiveness and applicability of the proposed algorithm, three case studies are presented to solve two practical problems in power systems.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%
bronze