
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A General Sensitivity Analysis Approach for Demand Response Optimizations

It is well-known that demand response can improve the system efficiency as well as lower consumers' (prosumers') electricity bills. However, it is not clear how we can either qualitatively identify the prosumer with the most impact potential or quantitatively estimate each prosumer's contribution to the total social welfare improvement when additional resource capacity/flexibility is introduced to the system with demand response, such as allowing net-selling behavior. In this work, we build upon existing literature on the electricity market, which consists of price-taking prosumers each with various appliances, an electric utility company and a social welfare optimizing distribution system operator, to design a general sensitivity analysis approach (GSAA) that can estimate the potential of each consumer's contribution to the social welfare when given more resource capacity. GSAA is based on existence of an efficient competitive equilibrium, which we establish in the paper. When prosumers' utility functions are quadratic, GSAA can give closed forms characterization on social welfare improvement based on duality analysis. Furthermore, we extend GSAA to a general convex settings, i.e., utility functions with strong convexity and Lipschitz continuous gradient. Even without knowing the specific forms the utility functions, we can derive upper and lower bounds of the social welfare improvement potential of each prosumer, when extra resource is introduced. For both settings, several applications and numerical examples are provided: including extending AC comfort zone, ability of EV to discharge and net selling. The estimation results show that GSAA can be used to decide how to allocate potentially limited market resources in the most impactful way.
17 pages
- Northwestern University United States
- Northwestern State University United States
- Northwestern University United States
- Northwestern University United States
- Northeastern University United States
FOS: Computer and information sciences, General Economics (econ.GN), Computational Engineering, Finance, and Science (cs.CE), FOS: Economics and business, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Computational Engineering, Finance, and Science, Mathematics - Optimization and Control, Economics - General Economics
FOS: Computer and information sciences, General Economics (econ.GN), Computational Engineering, Finance, and Science (cs.CE), FOS: Economics and business, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Computational Engineering, Finance, and Science, Mathematics - Optimization and Control, Economics - General Economics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
