
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stochastic Optimization Model to Study the Operational Impacts of High Wind Penetrations in Ireland

handle: 10197/4736
A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts of future high wind penetrations for the island of Ireland. Results show that at least 6000 MW of wind (34% of energy demand) can be integrated into the island of Ireland without significant curtailment and reliability problems.
- University of Stuttgart Germany
- IT University of Copenhagen Denmark
- Technical University of Denmark Denmark
- University College Dublin Ireland
- University of Duisburg-Essen Germany
910, reserves, forecast errors, Wind power, unit commitment and dispatch, energy policy
910, reserves, forecast errors, Wind power, unit commitment and dispatch, energy policy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).275 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
